3.735 \(\int \frac{x^2}{(a+b x^3)^{2/3} (c+d x^3)} \, dx\)

Optimal. Leaf size=145 \[ -\frac{\log \left (c+d x^3\right )}{6 \sqrt [3]{d} (b c-a d)^{2/3}}+\frac{\log \left (\sqrt [3]{b c-a d}+\sqrt [3]{d} \sqrt [3]{a+b x^3}\right )}{2 \sqrt [3]{d} (b c-a d)^{2/3}}-\frac{\tan ^{-1}\left (\frac{1-\frac{2 \sqrt [3]{d} \sqrt [3]{a+b x^3}}{\sqrt [3]{b c-a d}}}{\sqrt{3}}\right )}{\sqrt{3} \sqrt [3]{d} (b c-a d)^{2/3}} \]

[Out]

-(ArcTan[(1 - (2*d^(1/3)*(a + b*x^3)^(1/3))/(b*c - a*d)^(1/3))/Sqrt[3]]/(Sqrt[3]*d^(1/3)*(b*c - a*d)^(2/3))) -
 Log[c + d*x^3]/(6*d^(1/3)*(b*c - a*d)^(2/3)) + Log[(b*c - a*d)^(1/3) + d^(1/3)*(a + b*x^3)^(1/3)]/(2*d^(1/3)*
(b*c - a*d)^(2/3))

________________________________________________________________________________________

Rubi [A]  time = 0.123571, antiderivative size = 145, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.208, Rules used = {444, 58, 617, 204, 31} \[ -\frac{\log \left (c+d x^3\right )}{6 \sqrt [3]{d} (b c-a d)^{2/3}}+\frac{\log \left (\sqrt [3]{b c-a d}+\sqrt [3]{d} \sqrt [3]{a+b x^3}\right )}{2 \sqrt [3]{d} (b c-a d)^{2/3}}-\frac{\tan ^{-1}\left (\frac{1-\frac{2 \sqrt [3]{d} \sqrt [3]{a+b x^3}}{\sqrt [3]{b c-a d}}}{\sqrt{3}}\right )}{\sqrt{3} \sqrt [3]{d} (b c-a d)^{2/3}} \]

Antiderivative was successfully verified.

[In]

Int[x^2/((a + b*x^3)^(2/3)*(c + d*x^3)),x]

[Out]

-(ArcTan[(1 - (2*d^(1/3)*(a + b*x^3)^(1/3))/(b*c - a*d)^(1/3))/Sqrt[3]]/(Sqrt[3]*d^(1/3)*(b*c - a*d)^(2/3))) -
 Log[c + d*x^3]/(6*d^(1/3)*(b*c - a*d)^(2/3)) + Log[(b*c - a*d)^(1/3) + d^(1/3)*(a + b*x^3)^(1/3)]/(2*d^(1/3)*
(b*c - a*d)^(2/3))

Rule 444

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rule 58

Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(2/3)), x_Symbol] :> With[{q = Rt[-((b*c - a*d)/b), 3]}, -Sim
p[Log[RemoveContent[a + b*x, x]]/(2*b*q^2), x] + (Dist[3/(2*b*q), Subst[Int[1/(q^2 - q*x + x^2), x], x, (c + d
*x)^(1/3)], x] + Dist[3/(2*b*q^2), Subst[Int[1/(q + x), x], x, (c + d*x)^(1/3)], x])] /; FreeQ[{a, b, c, d}, x
] && NegQ[(b*c - a*d)/b]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rubi steps

\begin{align*} \int \frac{x^2}{\left (a+b x^3\right )^{2/3} \left (c+d x^3\right )} \, dx &=\frac{1}{3} \operatorname{Subst}\left (\int \frac{1}{(a+b x)^{2/3} (c+d x)} \, dx,x,x^3\right )\\ &=-\frac{\log \left (c+d x^3\right )}{6 \sqrt [3]{d} (b c-a d)^{2/3}}+\frac{\operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt [3]{b c-a d}}{\sqrt [3]{d}}+x} \, dx,x,\sqrt [3]{a+b x^3}\right )}{2 \sqrt [3]{d} (b c-a d)^{2/3}}+\frac{\operatorname{Subst}\left (\int \frac{1}{\frac{(b c-a d)^{2/3}}{d^{2/3}}-\frac{\sqrt [3]{b c-a d} x}{\sqrt [3]{d}}+x^2} \, dx,x,\sqrt [3]{a+b x^3}\right )}{2 d^{2/3} \sqrt [3]{b c-a d}}\\ &=-\frac{\log \left (c+d x^3\right )}{6 \sqrt [3]{d} (b c-a d)^{2/3}}+\frac{\log \left (\sqrt [3]{b c-a d}+\sqrt [3]{d} \sqrt [3]{a+b x^3}\right )}{2 \sqrt [3]{d} (b c-a d)^{2/3}}+\frac{\operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,1-\frac{2 \sqrt [3]{d} \sqrt [3]{a+b x^3}}{\sqrt [3]{b c-a d}}\right )}{\sqrt [3]{d} (b c-a d)^{2/3}}\\ &=-\frac{\tan ^{-1}\left (\frac{1-\frac{2 \sqrt [3]{d} \sqrt [3]{a+b x^3}}{\sqrt [3]{b c-a d}}}{\sqrt{3}}\right )}{\sqrt{3} \sqrt [3]{d} (b c-a d)^{2/3}}-\frac{\log \left (c+d x^3\right )}{6 \sqrt [3]{d} (b c-a d)^{2/3}}+\frac{\log \left (\sqrt [3]{b c-a d}+\sqrt [3]{d} \sqrt [3]{a+b x^3}\right )}{2 \sqrt [3]{d} (b c-a d)^{2/3}}\\ \end{align*}

Mathematica [A]  time = 0.0460597, size = 164, normalized size = 1.13 \[ \frac{-\log \left (-\sqrt [3]{d} \sqrt [3]{a+b x^3} \sqrt [3]{b c-a d}+(b c-a d)^{2/3}+d^{2/3} \left (a+b x^3\right )^{2/3}\right )+2 \log \left (\sqrt [3]{b c-a d}+\sqrt [3]{d} \sqrt [3]{a+b x^3}\right )+2 \sqrt{3} \tan ^{-1}\left (\frac{\frac{2 \sqrt [3]{d} \sqrt [3]{a+b x^3}}{\sqrt [3]{b c-a d}}-1}{\sqrt{3}}\right )}{6 \sqrt [3]{d} (b c-a d)^{2/3}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2/((a + b*x^3)^(2/3)*(c + d*x^3)),x]

[Out]

(2*Sqrt[3]*ArcTan[(-1 + (2*d^(1/3)*(a + b*x^3)^(1/3))/(b*c - a*d)^(1/3))/Sqrt[3]] + 2*Log[(b*c - a*d)^(1/3) +
d^(1/3)*(a + b*x^3)^(1/3)] - Log[(b*c - a*d)^(2/3) - d^(1/3)*(b*c - a*d)^(1/3)*(a + b*x^3)^(1/3) + d^(2/3)*(a
+ b*x^3)^(2/3)])/(6*d^(1/3)*(b*c - a*d)^(2/3))

________________________________________________________________________________________

Maple [F]  time = 0.033, size = 0, normalized size = 0. \begin{align*} \int{\frac{{x}^{2}}{d{x}^{3}+c} \left ( b{x}^{3}+a \right ) ^{-{\frac{2}{3}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(b*x^3+a)^(2/3)/(d*x^3+c),x)

[Out]

int(x^2/(b*x^3+a)^(2/3)/(d*x^3+c),x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(b*x^3+a)^(2/3)/(d*x^3+c),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 1.49881, size = 2037, normalized size = 14.05 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(b*x^3+a)^(2/3)/(d*x^3+c),x, algorithm="fricas")

[Out]

[-1/6*(3*sqrt(1/3)*(b*c*d - a*d^2)*sqrt(-(b^2*c^2*d - 2*a*b*c*d^2 + a^2*d^3)^(1/3)/d)*log((b^2*c^2 - 4*a*b*c*d
 + 3*a^2*d^2 - 2*(b^2*c*d - a*b*d^2)*x^3 + 3*sqrt(1/3)*(2*(b*x^3 + a)^(2/3)*(b*c*d - a*d^2) - (b^2*c^2*d - 2*a
*b*c*d^2 + a^2*d^3)^(1/3)*(b*c - a*d) + (b^2*c^2*d - 2*a*b*c*d^2 + a^2*d^3)^(2/3)*(b*x^3 + a)^(1/3))*sqrt(-(b^
2*c^2*d - 2*a*b*c*d^2 + a^2*d^3)^(1/3)/d) + 3*(b^2*c^2*d - 2*a*b*c*d^2 + a^2*d^3)^(1/3)*(b*x^3 + a)^(1/3)*(b*c
 - a*d))/(d*x^3 + c)) + (b^2*c^2*d - 2*a*b*c*d^2 + a^2*d^3)^(2/3)*log(-(b*x^3 + a)^(2/3)*(b*c*d - a*d^2) - (b^
2*c^2*d - 2*a*b*c*d^2 + a^2*d^3)^(1/3)*(b*c - a*d) + (b^2*c^2*d - 2*a*b*c*d^2 + a^2*d^3)^(2/3)*(b*x^3 + a)^(1/
3)) - 2*(b^2*c^2*d - 2*a*b*c*d^2 + a^2*d^3)^(2/3)*log(-(b*x^3 + a)^(1/3)*(b*c*d - a*d^2) - (b^2*c^2*d - 2*a*b*
c*d^2 + a^2*d^3)^(2/3)))/(b^2*c^2*d - 2*a*b*c*d^2 + a^2*d^3), 1/6*(6*sqrt(1/3)*(b*c*d - a*d^2)*sqrt((b^2*c^2*d
 - 2*a*b*c*d^2 + a^2*d^3)^(1/3)/d)*arctan(-sqrt(1/3)*((b^2*c^2*d - 2*a*b*c*d^2 + a^2*d^3)^(1/3)*(b*c - a*d) -
2*(b^2*c^2*d - 2*a*b*c*d^2 + a^2*d^3)^(2/3)*(b*x^3 + a)^(1/3))*sqrt((b^2*c^2*d - 2*a*b*c*d^2 + a^2*d^3)^(1/3)/
d)/(b^2*c^2 - 2*a*b*c*d + a^2*d^2)) - (b^2*c^2*d - 2*a*b*c*d^2 + a^2*d^3)^(2/3)*log(-(b*x^3 + a)^(2/3)*(b*c*d
- a*d^2) - (b^2*c^2*d - 2*a*b*c*d^2 + a^2*d^3)^(1/3)*(b*c - a*d) + (b^2*c^2*d - 2*a*b*c*d^2 + a^2*d^3)^(2/3)*(
b*x^3 + a)^(1/3)) + 2*(b^2*c^2*d - 2*a*b*c*d^2 + a^2*d^3)^(2/3)*log(-(b*x^3 + a)^(1/3)*(b*c*d - a*d^2) - (b^2*
c^2*d - 2*a*b*c*d^2 + a^2*d^3)^(2/3)))/(b^2*c^2*d - 2*a*b*c*d^2 + a^2*d^3)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{\left (a + b x^{3}\right )^{\frac{2}{3}} \left (c + d x^{3}\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(b*x**3+a)**(2/3)/(d*x**3+c),x)

[Out]

Integral(x**2/((a + b*x**3)**(2/3)*(c + d*x**3)), x)

________________________________________________________________________________________

Giac [A]  time = 1.17035, size = 298, normalized size = 2.06 \begin{align*} \frac{{\left (-b c d^{2} + a d^{3}\right )}^{\frac{1}{3}} \arctan \left (\frac{\sqrt{3}{\left (2 \,{\left (b x^{3} + a\right )}^{\frac{1}{3}} + \left (-\frac{b c - a d}{d}\right )^{\frac{1}{3}}\right )}}{3 \, \left (-\frac{b c - a d}{d}\right )^{\frac{1}{3}}}\right )}{\sqrt{3} b c d - \sqrt{3} a d^{2}} + \frac{{\left (-b c d^{2} + a d^{3}\right )}^{\frac{1}{3}} \log \left ({\left (b x^{3} + a\right )}^{\frac{2}{3}} +{\left (b x^{3} + a\right )}^{\frac{1}{3}} \left (-\frac{b c - a d}{d}\right )^{\frac{1}{3}} + \left (-\frac{b c - a d}{d}\right )^{\frac{2}{3}}\right )}{6 \,{\left (b c d - a d^{2}\right )}} - \frac{\left (-\frac{b c - a d}{d}\right )^{\frac{1}{3}} \log \left ({\left |{\left (b x^{3} + a\right )}^{\frac{1}{3}} - \left (-\frac{b c - a d}{d}\right )^{\frac{1}{3}} \right |}\right )}{3 \,{\left (b c - a d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(b*x^3+a)^(2/3)/(d*x^3+c),x, algorithm="giac")

[Out]

(-b*c*d^2 + a*d^3)^(1/3)*arctan(1/3*sqrt(3)*(2*(b*x^3 + a)^(1/3) + (-(b*c - a*d)/d)^(1/3))/(-(b*c - a*d)/d)^(1
/3))/(sqrt(3)*b*c*d - sqrt(3)*a*d^2) + 1/6*(-b*c*d^2 + a*d^3)^(1/3)*log((b*x^3 + a)^(2/3) + (b*x^3 + a)^(1/3)*
(-(b*c - a*d)/d)^(1/3) + (-(b*c - a*d)/d)^(2/3))/(b*c*d - a*d^2) - 1/3*(-(b*c - a*d)/d)^(1/3)*log(abs((b*x^3 +
 a)^(1/3) - (-(b*c - a*d)/d)^(1/3)))/(b*c - a*d)